Periodic solutions of a second order forced sublinear differential equation with delay
نویسندگان
چکیده
منابع مشابه
Periodic solutions of fourth-order delay differential equation
In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$ is investigated. Some new positive periodic criteria are given.
متن کاملperiodic solutions of fourth-order delay differential equation
in this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$ is investigated. some new positive periodic criteria are given.
متن کاملExistence of Periodic Solutions for a Second Order Nonlinear Neutral Differential Equation with Functional Delay
In this article we study the existence of periodic solutions of the second order nonlinear neutral differential equation with functional delay d dt x (t) + p (t) d dt x (t) + q (t) x (t) = d dt g (t, x (t− τ (t))) + f ` t, x (t) , x (t− τ (t)) ́ . The main tool employed here is the Burton-Krasnoselskii’s hybrid fixed point theorem dealing with a sum of two mappings, one is a large contraction an...
متن کاملPeriodic solutions for a second order nonlinear functional differential equation
The second order nonlinear delay differential equation with periodic coefficients x ′′(t)+ p(t)x ′(t)+ q(t)x(t) = r(t)x ′(t − τ(t))+ f (t, x(t), x(t − τ(t))), t ∈ R is considered in this work. By using Krasnoselskii’s fixed point theorem and the contraction mapping principle, we establish some criteria for the existence and uniqueness of periodic solutions to the delay differential equation. c ...
متن کاملUncountably many bounded positive solutions for a second order nonlinear neutral delay partial difference equation
In this paper we consider the second order nonlinear neutral delay partial difference equation $Delta_nDelta_mbig(x_{m,n}+a_{m,n}x_{m-k,n-l}big)+ fbig(m,n,x_{m-tau,n-sigma}big)=b_{m,n}, mgeq m_{0},, ngeq n_{0}.$Under suitable conditions, by making use of the Banach fixed point theorem, we show the existence of uncountably many bounded positive solutions for the above partial difference equation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2005
ISSN: 0893-9659
DOI: 10.1016/j.aml.2005.02.031